• Latest
  • Trending
  • All
  • Business
  • Politics
  • Science
  • Lifestyle
Archaeology Evidence of human occupation in Mexico around the Last Glacial Maximum

Archaeology Evidence of human occupation in Mexico around the Last Glacial Maximum

August 13, 2020
The Latest: Psaki: Biden aims to avoid vaccine supply crunch | World News

The Latest: Psaki: Biden aims to avoid vaccine supply crunch | World News

January 22, 2021
COVID-19: US president Joe Biden signs 10 executive orders to curb spread of coronavirus | US News

COVID-19: US president Joe Biden signs 10 executive orders to curb spread of coronavirus | US News

January 22, 2021
FTSE news: Markets and pound slump on grim economic news

FTSE news: Markets and pound slump on grim economic news

January 22, 2021
Trump downplayed the costs of carbon pollution. That’s about to change | Science

Trump downplayed the costs of carbon pollution. That’s about to change | Science

January 22, 2021
2nd LI Business Chosen For Barstool Fund For Small Businesses

2nd LI Business Chosen For Barstool Fund For Small Businesses

January 22, 2021
Why AMC Entertainment Is Soaring 17% Today

Why AMC Entertainment Is Soaring 17% Today

January 22, 2021
Lifestyle Mobility Aids: Expanding – and betting on HME providers 

Lifestyle Mobility Aids: Expanding – and betting on HME providers 

January 22, 2021
State health director Robert Gordon resigns

State health director Robert Gordon resigns

January 22, 2021
NYC students reflect on Capitol riot, politics

NYC students reflect on Capitol riot, politics

January 22, 2021
Samsung Highlights the Benefits of 5G Dynamic Spectrum Sharing Technology in New Whitepaper

Samsung Highlights the Benefits of 5G Dynamic Spectrum Sharing Technology in New Whitepaper

January 22, 2021
Rain and snow headed for wildfire-damaged areas of California, World News

Rain and snow headed for wildfire-damaged areas of California, World News

January 22, 2021
Rapper Soulja Boy beat, sexually assaulted assistant

Rapper Soulja Boy beat, sexually assaulted assistant

January 22, 2021
Monday, March 8, 2021
Info Web News
  • Home
  • UPDATES
    • Business
    • Entertainment
      Why AMC Entertainment Is Soaring 17% Today

      Why AMC Entertainment Is Soaring 17% Today

      Tony Award-winning choreographer Bob Avian dies at 83 | Entertainment

      Tony Award-winning choreographer Bob Avian dies at 83 | Entertainment

      Harvester Performance Center general manager to retire in February | Entertainment

      Harvester Performance Center general manager to retire in February | Entertainment

      Wisconsin Dells BID committee chooses summer entertainment location for 2021 | Regional news

      Wisconsin Dells BID committee chooses summer entertainment location for 2021 | Regional news

      Movie sequels that were better than the original | Entertainment

      Movie sequels that were better than the original | Entertainment

      Carrie Carroll and Jennifer Sawyer on ‘Northfield Shares an Evening of Entertainment’

      Carrie Carroll and Jennifer Sawyer on ‘Northfield Shares an Evening of Entertainment’

      Army, Navy/Marine Corps, Air Force, and Joint Service Spending Plans

      Focus on Content Acquisition, Editing, Archiving and Digital Preservation, Broadcast, Satellite, Cable, Network, Internet, OTT and VOD

      Football Legend Tim Brown, Hall of Fame Resort and Entertainment Company and Elite Holdings to Collaborate on Original NFL Films Documentary

      Football Legend Tim Brown, Hall of Fame Resort and Entertainment Company and Elite Holdings to Collaborate on Original NFL Films Documentary

      Connecting Style & Health – Amazfit Launches Contest for Fans in the US, UK, France, Germany & Russia to Win Its Market Leading Wearables

      LIZHI INC. Awarded the Best Innovative Cultural and Entertainment Platforms

      Today’s events for Jan. 22 | Entertainment

      Today’s events for Jan. 22 | Entertainment

    • Health
    • Lifestyle
    • Politics
    • Science
    • Technology
    • US News
    • World News
  • Videos
No Result
View All Result
Info Web News
No Result
View All Result
Home Science

Archaeology Evidence of human occupation in Mexico around the Last Glacial Maximum

by Perry Page
August 13, 2020
in Science
0
Archaeology Evidence of human occupation in Mexico around the Last Glacial Maximum
492
SHARES
1.4k
VIEWS
Share on FacebookShare on Twitter

Archaeology

Abstract

The initial colonization of the Americas remains a highly debated topic1, and the exact timing of the first arrivals is unknown. The earliest archaeological record of Mexico—which holds a key geographical position in the Americas—is poorly known and understudied. Historically, the region has remained on the periphery of research focused on the first American populations2. However, recent investigations provide reliable evidence of a human presence in the northwest region of Mexico3,4, the Chiapas Highlands5, Central Mexico6 and the Caribbean coast7,8,9 during the Late Pleistocene and Early Holocene epochs. Here we present results of recent excavations at Chiquihuite Cave—a high-altitude site in central-northern Mexico—that corroborate previous findings in the Americas10,11,12,13,14,15,16,17of cultural evidence that dates to the Last Glacial Maximum (26,500–19,000 years ago)18, and which push back dates for human dispersal to the region possibly as early as 33,000–31,000 years ago. The site yielded about 1,900 stone artefacts within a 3-m-deep stratified sequence, revealing a previously unknown lithic industry that underwent only minor changes over millennia. More than 50 radiocarbon and luminescence dates provide chronological control, and genetic, palaeoenvironmental and chemical data document the changing environments in which the occupants lived. Our results provide new evidence for the antiquity of humans in the Americas, illustrate the cultural diversity of the earliest dispersal groups (which predate those of the Clovis culture) and open new directions of research.

Data availability

The data that support the findings of this study are available in the Article and its Supplementary Information. Raw data and sequence alignments are available from the European Nucleotide Archive under accession number PRJEB37914. The exact coordinates of Chiquihuite Cave are available from C.F.A. on reasonable request. C.F.A. can also be contacted at cip_ardelean@hotmail.com.

Code availability

Code for R and OxCal is noted within the Supplementary Information. Code for environmental DNA data analysis can be found at https://github.com/miwipe/ngsLCA.

References

  1. 1.

    Meltzer, D. J. The Great Paleolithic War: How Science Forged an Understanding of America’s Ice Age Past (Univ. Chicago Press, 2015).

  2. 2.

    Ardelean, C. F. et al. in People and Culture in Ice Age Americas: New Dimensions in Paleoamerican Archaeology (eds Suarez, R. & Ardelean, C. F.) 108–133 (Univ. Utah Press, 2019).

  3. 3.

    Sanchez, G. et al. Human (Clovis)–gomphothere (Cuvieronius sp.) association ~13,390 calibrated yBP in Sonora, Mexico. Proc. Natl Acad. Sci. USA 111, 10972–10977 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  4. 4.

    Des Lauriers, M. R., Davis, L. G., Turnbull, J., Southon, J. R. & Taylor, R. E. The earliest fish hooks from the Americas reveal fishing technology of Pleistocene maritime foragers. Am. Antiq. 82, 498–516 (2017).


    Google Scholar
     

  5. 5.

    Acosta, G. et al. Climate change and peopling of the Neotropics during the Pleistocene–Holocene transition. Bol. Soc. Geol. Mex. 70, 1–19 (2018).


    Google Scholar
     

  6. 6.

    González, S., Jiménez López, C., Hedges, R., Pompa y Padilla, J. A. & Huddart, D. Early humans in Mexico: new chronological data. In El Hombre Temprano en América y sus Implicaciones en el Poblamiento de la Cuenca de México: Primer Simposio Internacional (eds Jiménez López, C. et al.) 67–77 (Instituto Nacional de Anthrología e Historia, 2006).

  7. 7.

    González, A. et al. in Paleoamerican Odyssey (eds Graf, K. E. et al.) 323–337 (Center for the Study of the First Americans, 2014).

  8. 8.

    Chatters, J. C. et al. Late Pleistocene human skeleton and mtDNA link Paleoamericans and modern Native Americans. Science 344, 750–754 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  9. 9.

    Stinnesbeck, W. et al. The earliest settlers of Mesoamerica date back to the late Pleistocene. PLoS ONE 12, e0183345 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  10. 10.

    Williams, T. J. et al. Evidence of an early projectile point technology in North America at the Gault Site, Texas, USA. Sci. Adv. 4, eaar5954 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  11. 11.

    Waters, M. R. et al. Pre-Clovis projectile points at the Debra L. Friedkin site, Texas–implications for the Late Pleistocene peopling of the Americas. Sci. Adv. 4, eaat4505 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  12. 12.

    Jenkins, D. L. et al. Clovis age Western Stemmed projectile points and human coprolites at the Paisley Caves. Science 337, 223–228 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  13. 13.

    Adovasio, J. M., Gunn, J. D., Donahue, J. & Stuckenrath, R. Meadowcroft Rockshelter, 1977: an overview. Am. Antiq. 43, 632–651 (1978).


    Google Scholar
     

  14. 14.

    Halligan, J. J. et al. Pre-Clovis occupation 14,550 years ago at the Page–Ladson site, Florida, and the peopling of the Americas. Sci. Adv. 2, e1600375 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  15. 15.

    Dillehay, T. D. Monte Verde, a Late Pleistocene Settlement in Chile: The Archaeological Context and Interpretation (Smithsonian Institution Press, 1997).

  16. 16.

    Bourgeon, L., Burke, A. & Higham, T. Earliest human presence in North America dated to the Last Glacial Maximum: new radiocarbon dates from Bluefish Caves, Canada. PLoS ONE 12, e0169486 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  17. 17.

    Davis, L. G. et al. Late Upper Paleolithic occupation at Cooper’s Ferry, Idaho, USA, ~16,000 years ago. Science 365, 891–897 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  18. 18.

    Clark, P. U. et al. The Last Glacial Maximum. Science 325, 710–714 (2009).

  19. 19.

    Ardelean, C. F. Archaeology of Early Human Occupations and the Pleistocene–Holocene Transition in the Zacatecas Desert, Northern Mexico. PhD thesis, Univ. Exeter (2013).

  20. 20.

    Brock, F., Higham, T., Ditchfield, P. & Bronk Ramsey, C. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52, 103–112 (2010).

    CAS 

    Google Scholar
     

  21. 21.

    Wang, Y., Amundson, R. & Trumbore, S. Radiocarbon dating of soil organic matter. Quat. Res. 45, 282–288 (1996).


    Google Scholar
     

  22. 22.

    Pessenda, L. C. R., Gouveia, S. E. M. & Aravena, R. Radiocarbon dating of total soil organic matter and humin fraction and its comparison with 14C ages of fossil charcoal. Radiocarbon 43, 595–601 (2001).

    CAS 

    Google Scholar
     

  23. 23.

    Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014).

    ADS 

    Google Scholar
     

  24. 24.

    Dunham, R. J. Classification of carbonate rocks according to depositional texture. In Classification of Carbonate Rocks—A Symposium (ed. Ham, W. E.) 108–121 (The American Association of Petroleum Geologists, 1962).

  25. 25.

    Folk, R. L. Practical petrographic classification of limestones. Bull. Am. Assoc. Petrol. Geol. 43, 1–38 (1959).

    CAS 

    Google Scholar
     

  26. 26.

    Smallwood, A. M. & Jennings, T. A. Clovis: On the Edge of a New Understanding (Texas A&M Univ. Press, 2014).

  27. 27.

    Goebel, T. & Keene, J. L. in Archaeology in the Great Basin and Southwest: Papers in Honor of Don D. Fowler (eds Parezo, N. J. & Janetski, J. C.) 35–60 (Univ. Utah Press, 2014).

  28. 28.

    Graf, K. E. & Buvit, I. Human dispersal from Siberia to Beringia: assessing a Beringian standstill in light of the archaeological evidence. Curr. Anthropol. 58, S583–S603 (2017).


    Google Scholar
     

  29. 29.

    Willerslev, E. et al. Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300, 791–795 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  30. 30.

    Pedersen, M. W. et al. Postglacial viability and colonization in North America’s ice-free corridor. Nature 537, 45–49 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  31. 31.

    Villaseñor, J. L. Checklist of the native vascular plants of Mexico. Rev. Mex. Biodivers. 87, 559–902 (2016).


    Google Scholar
     

  32. 32.

    Henderson, A., Bernal, R. & Galeano-Garces, G. Field Guide to the Palms of the Americas (Princeton Univ. Press, 1997).

  33. 33.

    Slon, V. et al. Neandertal and Denisovan DNA from Pleistocene sediments. Science 356, 605–608 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  34. 34.

    Middleton, W. D. et al. The study of archaeological floors: methodological proposal for the analysis of anthropogenic residues by spot tests, ICP-OES, and GC-MS. J. Archaeol. Method Theory 17, 183–208 (2010).


    Google Scholar
     

  35. 35.

    Rasmussen, S. O. et al. A new Greenland ice core chronology for the last glacial termination. J. Geophys. Res. 111, D06102 (2006).

    ADS 

    Google Scholar
     

  36. 36.

    Sedlock, R. L., Ortega-Gutiérrez, F. & Speed, R. C. Tectonostratigraphic Terranes and Tectonic Evolution of Mexico (GSA Special Papers Volume 278) (Geological Society of America, 1993).

  37. 37.

    Padilla y Sánchez, R. J. Geological Map of the Curvature of Monterrey, Mexico (GSA, 2006).

  38. 38.

    Ramsey, C. B., Higham, T. & Leach, P. Towards high-precision AMS: progress and limitations. Radiocarbon 46, 17–24 (2004).

    CAS 
    Article 

    Google Scholar
     

  39. 39.

    Hajdas, I. Radiocarbon dating and its applications in Quaternary studies. E&G Quat. Sci.J. 57, 2–24 (2008).


    Google Scholar
     

  40. 40.

    Abbott, M. B. & Stafford, T. W. Radiocarbon geochemistry of modern and ancient Arctic lake systems, Baffin Island, Canada. Quat. Res. 45, 300–311 (1996).

    CAS 

    Google Scholar
     

  41. 41.

    Longin, R. New method of collagen extraction for radiocarbon dating. Nature 230, 241–242 (1971).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  42. 42.

    Solís, C. et al. A new AMS facility in Mexico. Nucl. Instrum. Methods Phys. Res. B 331, 233–237 (2014).

    ADS 

    Google Scholar
     

  43. 43.

    International Chemical Analysis. International Chemical Analysis. https://www.radiocdating.com/ (accessed 18 July 2018) (2017).

  44. 44.

    Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).


    Google Scholar
     

  45. 45.

    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).

    CAS 

    Google Scholar
     

  46. 46.

    Bronk Ramsey, C. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51, 1023–1045 (2009).


    Google Scholar
     

  47. 47.

    Aitken, M. J. Introduction to Optical Dating: The Dating of Quaternary Sediments by the Use of Photon-stimulated Luminescence (Clarendon, 1998).

  48. 48.

    Mirazón Lahr, M. et al. Inter-group violence among early Holocene hunter-gatherers of West Turkana, Kenya. Nature 529, 394–398 (2016).

    ADS 
    PubMed 

    Google Scholar
     

  49. 49.

    Bøtter-Jensen, L., Bulur, E., Duller, G. A. T. & Murray, A. S. Advances in luminescence instrument systems. Radiat. Meas. 32, 523–528 (2000).

    Article 

    Google Scholar
     

  50. 50.

    Richter, D., Richter, A. & Dornich, K. Lexsyg smart—a luminescence detection system for dosimetry, material research and dating application. Geochronometria 42, 202–209 (2015).

    CAS 

    Google Scholar
     

  51. 51.

    Murray, A. S. & Wintle, A. G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiat. Meas. 32, 57–73 (2000).

    CAS 

    Google Scholar
     

  52. 52.

    Wintle, A. G. & Murray, A. S. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiat. Meas. 41, 369–391 (2006).

    CAS 

    Google Scholar
     

  53. 53.

    Banerjee, D., Murray, A. S., Bøtter-Jensen, L. & Lang, A. Equivalent dose estimation using a single aliquot of polymineral fine grains. Radiat. Meas. 33, 73–94 (2001).

    CAS 

    Google Scholar
     

  54. 54.

    Wallinga, J., Murray, A. S. & Bøtter-Jensen, L. Measurement of the dose in quartz in the presence of feldspar contamination. Radiat. Prot. Dosimetry 101, 367–370 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  55. 55.

    Durcan, J. A., King, G. E. & Duller, G. A. T. DRAC: dose rate and age calculator for trapped charge dating. Quat. Geochronol. 28, 54–61 (2015).


    Google Scholar
     

  56. 56.

    Barba, L. Chemical residues in lime-plastered archaeological floors. Geoarchaeology 22, 439–452 (2007).

    Article 

    Google Scholar
     

  57. 57.

    Piperno, D. R. Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists (Rowman Altamira, 2006).

  58. 58.

    Piperno, D. R. & Pearsall, D. M. The Silica Bodies of Tropical American Grasses: Morphology, Taxonomy, and Implications for Grass Systematics and Fossil Phytolith Identification (Smithsonian Institution, 1998).

  59. 59.

    Gallego, L. & Distel, R. A. Phytolith assemblages in grasses native to central Argentina. Ann. Bot. 94, 865–874 (2004).

    PubMed 
    PubMed Central 

    Google Scholar
     

  60. 60.

    Fredlund, G. G. & Tieszen, L. T. Modern phytolith assemblages from the North American Great Plains. J. Biogeogr. 21, 321–335 (1994).


    Google Scholar
     

  61. 61.

    Colinvaux, P., De Olieira, P. E. & Moreno Patino, J. E. Amazon Pollen Manual and Atlas (Harwood Academic, 1999).

  62. 62.

    Roubik, D. W. & Moreno Patiño, J. E. Pollen and Spores of Barro Colorado Island (Missouri Botanical Garden, 1991).

  63. 63.

    Markgraf, V. & d’Antoni, H. L. Pollen Flora of Argentina (Univ. Arizona Press, 1978).

  64. 64.

    Johnston, I. M. Plants of Coahuila, eastern Chihuahua, and adjoining Zacatecas and Durango, V. J. Arnold Arbor. 25, 133–182 (1944).


    Google Scholar
     

  65. 65.

    González-Tagle, M. A., Schwendenmann, L., Pérez, J. J. & Schulz, R. Forest structure and woody plant species composition along a fire chronosequence in mixed pine–oak forest in the Sierra Madre Oriental, Northeast Mexico. For. Ecol. Manage. 256, 161–167 (2008).


    Google Scholar
     

  66. 66.

    Ludlow Wiechers, B., Almeida Leñero, L. & Sugiura, Y. Palinomorfos del Holoceno en la cuenca alta del Río Lerma, Estado de México, México. Bol. Sociedad Botánica de México 72, 59–105 (2003).


    Google Scholar
     

  67. 67.

    Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, db.prot5448 (2010).


    Google Scholar
     

  68. 68.

    Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

Download references

Acknowledgements

The field explorations and part of the laboratory studies were made possible by the special sponsorship from the Government of the State of Zacatecas, through the Consejo Zacatecano de Ciencia, Tecnología e Innovación (COZCyT); we thank its consecutive directors, G. A. Mercado-Sánchez and A. Enciso-Muñoz, and the Governor of Zacatecas, A. Tello-Cristerna. Seed money for cave exploration came from the Center for American Paleolithic Research (CAPR); we thank S. Holen, K. Holen and the members of the board. Fieldwork, laboratory analyses and publication expenses were partially covered by CONACYT grant CB-2016-286130. The Concepción del Oro municipality, and A. Maldonado-Falcón, offered administrative and occasional financial assistance. Radiocarbon work at Oxford was supported by the NERC Radiocarbon Facility (NRCF), Merton College, Santander and the Clarendon Fund. We thank all colleagues at the ORAU. D. Peat contributed greatly to laboratory preparation of OSL samples. A. Ocaña and I. Alarcón participated in the identification of animal bones. The environmental DNA work was supported by the Lundbeck Foundation, the Novo Nordic Foundation, the Wellcome Trust Foundation, the Carlsberg Foundation and the Danish National Research Foundation. We thank INAH’s Archaeology Council for authorization and legal permits; the inhabitants of Guadalupe Garzarón for accepting this project in their territory and participating in the caravans; and J. Martínez-Ledezma for his constant support as an on-site administrator and liaison with the community.

Author information

Affiliations

  1. Unidad Académica de Antropología, Universidad Autónoma de Zacatecas, Zacatecas, Mexico

    Ciprian F. Ardelean, Zamara Navarro-Gutierrez, Jesús J. De La Rosa-Díaz, Vladimir Huerta-Arellano & L. Martin Martínez-Riojas

  2. Department of Archaeology, University of Exeter, Exeter, UK

    Ciprian F. Ardelean

  3. Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK

    Lorena Becerra-Valdivia, Jean-Luc Schwenninger & Thomas Higham

  4. Chronos 14C-Cycle Facility, SSEAU, University of New South Wales, Sydney, New South Wales, Australia

    Lorena Becerra-Valdivia

  5. Lundbeck Foundation GeoGenetics Centre, University of Copenhagen, Copenhagen, Denmark

    Mikkel Winther Pedersen, Martin Sikora & Eske Willerslev

  6. Department of Geology, Kansas State University, Manhattan, KS, USA

    Charles G. Oviatt

  7. Escuela de Arqueología, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, Mexico

    Juan I. Macías-Quintero & Marco B. Marroquín-Fernández

  8. Laboratorio de Arqueozoología, Subdirección de Laboratorios y Apoyo Académico, Instituto Nacional de Antropología e Historia, Mexico City, Mexico

    Joaquin Arroyo-Cabrales & Alejandro López-Jiménez

  9. Facultad de Ingeniería, Universidad Autónoma de San Luís Potosí, San Luis Potosí, Mexico

    Yam Zul E. Ocampo-Díaz

  10. Grupo de Geología Exógena y del Sedimentario, San Luis Potosí, Mexico

    Yam Zul E. Ocampo-Díaz & Igor I. Rubio-Cisneros

  11. Laboratório de Arqueologia dos Trópicos, Museu de Arqueologia e Etnologia, Universidade de São Paulo, São Paulo, Brazil

    Jennifer G. Watling

  12. Laboratório de Micropaleontologia, Instituto de Geociências, Universidade de São Paulo, São Paulo, Brazil

    Vanda B. de Medeiros & Paulo E. De Oliveira

  13. Botany Department, The Field Museum of Natural History, Chicago, IL, USA

    Paulo E. De Oliveira

  14. Laboratorio de Prospección Arqueológica, Instituto de Investigaciones Antropológicas (IIA), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico

    Luis Barba-Pingarón, Agustín Ortiz-Butrón & Jorge Blancas-Vázquez

  15. Laboratorio de Palinología, Escuela Nacional de Antropología e Historia (ENAH), Mexico City, Mexico

    Irán Rivera-González

  16. Laboratorio de Espectrometría de Masas con Aceleradores, Instituto de Física, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico

    Corina Solís-Rosales & María Rodríguez-Ceja

  17. Department of Archaeology, University of Cambridge, Cambridge, UK

    Devlin A. Gandy

  18. Welcome Trust, Sanger Institute, Hinxton, UK

    Eske Willerslev

  19. The Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark

    Eske Willerslev

  20. Department of Zoology, University of Cambridge, Cambridge, UK

    Eske Willerslev

Contributions

C.F.A. designed the project, directed excavations, analysed lithics, photographed artefacts and put together the research team. L.B.-V. and T.H. performed sampling, AMS radiocarbon dating and Bayesian modelling analysis. C.S.-R. and M.R.-C. performed AMS radiocarbon dating. M.W.P., M.S. and E.W. designed and conducted the DNA and bioinformatic analyses. J.-L.S. undertook the OSL dating. C.G.O. performed geological studies. J.I.M.-Q. participated in the discovery of the site, mapping, artefact plotting and GIS analyses. J.A.-C. conducted the zooarchaeological analysis. L.B.-P. and A.O.-B. conducted chemical residues analysis. J.B.-V. performed X-ray fluorescence. Y.Z.E.O.-D. and I.I.R.-C. conducted thin-section petrography and micromorphology analyses. J.G.W. performed the phytolith analysis. V.B.d.M., P.E.D.O. and I.R.-G. studied pollen samples. Z.N.-G. performed flotation and malacology analyses. D.A.G. performed photogrammetry. Z.N.-G., J.J.D.L.R.-D., V.H.-A., M.B.M.-F., L.M.M.-R., and A.L.-J. excavated. C.F.A., L.B.-V., M.W.P., J.I.M.-Q., J.J.D.L.R.-D. and D.A.G. created figures. C.F.A. wrote the paper with co-authors contributing to the draft.

Corresponding authors

Correspondence to
Ciprian F. Ardelean or Eske Willerslev.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Deborah M. Pearsall, Fiona Petchey and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Additional information on the site and excavation.

a, Digital elevation model (DEM) map of Mexico with the study area (rectangle) in relationship to relevant modern and prehistoric localities. b, The study region (Concepción del Oro endorheic basin), with Chiquihuite Cave (green dot) on the Astillero Mountains. DEM mosaic generated from ortophotographs and elevation data from National Institute of Statistics and Geography (INEGI) of Mexico. c, Chiquihuite Peak, seen from the south; the arrow indicates the entrance of the cave. d, The main chamber, looking west towards the double-eyed entrance. e, Contact between the limestone lintel of the ancient entrance (25 m west of X-12), and the debris that sealed it, probably at the end of the Pleistocene epoch. f, The south profile of the central–eastern squares, as in Fig. 1b. g, Western profiles of the central sector, showing the exposed interface 1210 tilted in the centre of the photograph. h, East–west cross-section of the northern sector of the main chamber of the cave, along the southern profile of the dig. i, X-12 cross-section, showing the inclination of the cave floor and the stepped approach. The DEMs in a, b were created with ArcMap/ArcScene (by ESRI) using open-access topographical data provided by INEGI.

Extended Data Fig. 2 Three-dimensional photogrammetric model of excavation X-12 and the location of samples extracted and analysed for ancient environmental DNA.

a, North-facing profile. b, East-facing profile. Triangles indicate the respective locations of environmental DNA samples extracted in 2019, corresponding to different stratigraphic units (‘UE’, as shown in the key). The circled samples are the initial ones, from the 2016–2017 excavation. c, Complete 3D photogrammetric view of the excavation towards the southern profile. The reddish-brown layers visible along the entire southern profile represent the stratigraphic component C (SC-C), starting downwards with stratum 1212, the terminal LGM chronostratigraphic marker that defines the separation between SC-B and SC-C (Fig. 1b, Extended Data Fig. 7).

Extended Data Fig. 3 Finds plotted onto the excavation grid.

a, Horizontal (x and y axes) spatial distribution of lithic artefacts, radiocarbon and OSL samples on the excavation grid. b, Side view (from the south) of the vertical distribution (x and z axes) of finds and samples. Illustrated dating samples: (1) LEMA-635.1.1 and LEMA-635.1.2; (2) OxA-36608 and LEMA-978.1.1; (3) OxA-36610; (4) LEMA-574.1.1; (5) LEMA-640.1.1; (6) OxA-36496; (7) OxA-36613; (8) X-7227; (9) OxA-36614; (10) LEMA-636.1.1 and LEMA-636.1.2; (11) LEMA-576.1.1; (12) LEMA-577.1.1; (13) X-7228; (14) X-7231 and X-7232; (15) X-7229; (16) OxA-36530; (17) OxA-36633; (18) OxA-36609; (19) OxA-36612; (20) OxA-36360; (21) BETA-345055; (22) X-4135; (23) OxA-34965; (24) ICA-16OS/0510; (25) PRI-5414; (26) OxA-36616; (27) OxA-36620; (28) OxA-36618; (29) OxA-36615; (30) OxA-36617; (31) OxA-36621; (32) OxA-36619; (33) OxA-36753; (34) OxA-36611; (35) X-7233; (36) LEMA-573.1.1; (37) OxA-36359; (38) LEMA-892.1.2; (39) OxA-36622; (40) OxA-36623; (41) OxA-36634; (42) LEMA-893.1.1; (43) LEMA-977.1.1; (44) OxA-36624; and (45) OxA-36625.

Extended Data Fig. 4 Taxonomic profiles of animals (Amniota) and plants (Viridiplantae) identified by ancient environmental DNA.

a, b, Animals presented as the proportion of reads found of each taxa and plotted as a bar plot (b) and stratigraphic plot (a). c, d, All plants are presented as the proportion of reads found of each taxa and plotted as a bar plot (c) and stratigraphic plot (d). *Taxa also found by pollen, phytoliths or faunal remains.

Extended Data Fig. 5 Additional Chiquihuite lithic artefacts.

a–c, Cores. d, e, Bifacial preforms on ovoid nodules. f–n, Flakes. o–t, Blades. u–x, Microliths. y, w, Burins. z, a′, Scrapers. b′–l′, Points and point-like shapes. m′–p′, Geometric items made by fracturing calcite laminae. Artefacts i, n, o, b′, c′, f′, and k′ are from SC-C; all others are from SC-B. Scale bars, 1 cm.

Extended Data Fig. 6 Additional examples of lithics.

a, Core. b, Flake with isolated platform. c, Flake with lipped platform. d–i, Blades and microlith blade segments. j, Circular scraper on trimmed flake. k, Possible preform. l, Point on plaquette. m, Bifacial point preform. n, o, s–a′, d′–g′, Transversal points (obtained by slightly modifying transversal flake blanks). p–r, b′, c′, Other points. h′, A geometric, point-like shape on calcite sheet. Most artefacts were discovered in SC-B. Specimens x–z, b′, g′, h′ are from SC-C. Scale bars, 1 cm.

Extended Data Fig. 7 Stratigraphic correlations across different profiles in X-12.

a, b, Excavation grid diagram (a) and maximum-depth diagram (b) showing the position of the profiles depicted below. For correlation reasons, all profiles show the upper contact of stratum 1210 with 1212 marked with a white contour. The position of OSL samples is indicated (labels beginning with X-). c, South profile, squares K2, K3, L2 and L3. d, South profile, square H2. e, South profile, square G2. f, South profile, square F2. g, South profile, squares M3, M4, N3 and N4. h, West profile, square J4. i, West profile, squares I5 and I6. j, Eastern profile, squares M4, M5 and M6 (profile removed during the 2016–2017 winter excavations). k, Eastern profile, squares N4, N5 and N6 (new eastern profile after the excavation of the one shown in j).

Extended Data Table 1 Chronometric data ordered by strata and depth

Supplementary information

Supplementary Information 1

This file contains the concentration of data from all the different scientific approaches included in the paper. Each proxy-related section is numbered consecutively, from 1 to 10, such as: 1.1. Geology; 1.2. Radiocarbon dating and Bayesian modelling. 1.3. Lithic artefact metrics. 1.4. Chemical residues. 1.5. Faunal remains. 1.6. Phytoliths and pollen. 1.7. Thin-section and micromorphology. 1.8. Commercial radiocarbon dating methods. 1.9. Optically stimulated luminescence (OSL) dating. 1.10. Environmental DNA. Each section number is referred as such in the manuscript.

Supplementary Information 2

This file contains plots used in the assessment of ancient DNA authentication for the animal taxa found. The first column contains the read length distribution (in Bp) of the reads aligning to the reference (see supplementary metadata file), the second columns plots the number of mismatches (edit distance) of each read to the same reference. In the third column, the fraction of C-T transitions due to DNA damage, as calculated by mapDamage2.0, is plotted. Each new row contains a new species from a specific layer.

Supplementary Information 3

This file contains plots used in the assessment of ancient DNA authentication for the plant taxa found. The first column contains the read length distribution (in Bp) of the reads aligning to the reference (see supplementary metadata file), the second columns plots the number of mismatches (edit distance) of each read to the same reference. In the third column, the fraction of C-T transitions due to DNA damage, as calculated by mapDamage2.0, is plotted. Each new row contains a new species from a specific layer.

Supplementary Information 4

A link to the 3D digital photogrammetric model of excavation X-12. This is an on-line dynamic model that shows the tridimensional photographic modelling of the excavation, same as in Fig. 1c and Extended Data Fig. 2. It includes the display of the entire spectrum of eDNA samples extracted in 2019 for aDNA reassessment, as well as the northern wall of the cave. The viewer can rotate the model around the x,y,z axis.

Supplementary Data

The eDNA metadata file contains information relating to layer in excavation, excavation coordinate, total sequences sequenced, reads after quality control, sequencing batch, extraction batch, number of replicated samples and total counts of total taxonomically classified reads and total classified reads at the different kingdoms; Bacteria, Viridiplantae, and Amniota. Including reads checked for DNA damage at different mapping qualities (MQ) and the proportion of damage found.

Supplementary Video 1

: A dynamic tridimensional view of the artefact-and-sample plot depicted in Extended Data Fig. 3. This video allows the viewer to appreciate the 3D relationship between the items without the need to run the model in an ArcScene (by ESRI) software. Motion starts at 00: 08.

About this article

Archaeology Verify currency and authenticity via CrossMark

Cite this article

Ardelean, C.F., Becerra-Valdivia, L., Pedersen, M.W. et al. Evidence of human occupation in Mexico around the Last Glacial Maximum.
Nature 584, 87–92 (2020). https://doi.org/10.1038/s41586-020-2509-0

Download citation

  • Received: 31 August 2018

  • Accepted: 16 June 2020

  • Published: 22 July 2020

  • Issue Date: 06 August 2020

  • DOI: https://doi.org/10.1038/s41586-020-2509-0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Share197Tweet123Share49
Perry Page

Perry Page

  • Trending
  • Comments
  • Latest
Archaeology Here’s What Julius Caesar, Cleopatra, Caligula And Others Would Appear like Today

Archaeology Here’s What Julius Caesar, Cleopatra, Caligula And Others Would Appear like Today

February 1, 2020
Clemson vs. Ohio State score: Live game coverage, Sugar Bowl 2021 updates, College Football Playoff scores

Clemson vs. Ohio State score: Live game coverage, Sugar Bowl 2021 updates, College Football Playoff scores

January 1, 2021
House looks to impeachment vote, Pelosi discusses nuclear codes

House looks to impeachment vote, Pelosi discusses nuclear codes

January 8, 2021
The Latest: Psaki: Biden aims to avoid vaccine supply crunch | World News

The Latest: Psaki: Biden aims to avoid vaccine supply crunch | World News

0
US News Mafia raid in Italy turns up ‘toolbox’ of guns, dynamites and drugs: police

US News Mafia raid in Italy turns up ‘toolbox’ of guns, dynamites and drugs: police

0
US News Andrew McCarthy: How about a bipartisan treaty against the criminalization of elections?

US News Andrew McCarthy: How about a bipartisan treaty against the criminalization of elections?

0
The Latest: Psaki: Biden aims to avoid vaccine supply crunch | World News

The Latest: Psaki: Biden aims to avoid vaccine supply crunch | World News

January 22, 2021
COVID-19: US president Joe Biden signs 10 executive orders to curb spread of coronavirus | US News

COVID-19: US president Joe Biden signs 10 executive orders to curb spread of coronavirus | US News

January 22, 2021
FTSE news: Markets and pound slump on grim economic news

FTSE news: Markets and pound slump on grim economic news

January 22, 2021
Info Web News

Copyright © 2017-2021 Info Web News.

Navigate Site

  • Privacy Policy
  • Cookie Policy
  • Terms of Service
  • Disclosure
  • DMCA
  • Contact

Follow Us

No Result
View All Result
  • Home
  • UPDATES
    • Business
    • Entertainment
    • Health
    • Lifestyle
    • Politics
    • Science
    • Technology
    • US News
    • World News
  • Videos

Copyright © 2017-2021 Info Web News.